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Background: Jet Images 

• Data source: Calorimeter, particle detector.


• Data format: jet images – 2D representations of energy 
depositions of the jets interacting with calorimeter.

Typical jet image Averaged image



Background: Challenges of 
Simulation in HEP

• Time consuming: few seconds to simulate a single event 
(where millions or more are needed). 


• Space consuming: storing intermediate results in 
simulation. 


• Need a large number of simulations to get events in 
kinematically unfavorable region.



Deep Generative Models in Jet 
Image Simulation

• Goal: Replace Monte Carlo simulation with deep generative models 
which is lighter and faster. 


• Approach: 


• Distill knowledge from Monte Carlo simulation into neural network: 
density estimation of jet images. 


• Generate according to the learned distribution efficiently. 


Challenges:


• Faithfully reconstruct distribution of high level observables in MC 
simulation: Mass, Pt distribution, hard for generative models 
designed for natural images.  


• Sparsity (93%) and high dimensionality: 25 by 25 pixel images. 
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Deep Generative Models in Jet 
Image Simulation

• Goal: Replace Monte Carlo simulation with deep generative models 
which is lighter and faster. 


• Approach: 


• Distill knowledge from Monte Carlo simulation into neural 
network: density estimation of jet images. 


• Generate according to the learned distribution efficiently. 


Challenges:


• Sparsity (93% pixels are zeros)


• Faithfully reconstruct distribution of high level observables which 
can be computed from the jet images, e.g. Mass, pT distributions.



Deep Generative Models in Jet 
Image Simulation

Challenges with GAN: 


• Unstable training and mode collapse (Nagarajan et al., 2017)


• Sparse gradient signal (LAGAN  
Oliveira et al., 2017)


• No likelihood evaluation, less interpretable 

Neither GANs nor VAEs produce a tractable marginal likelihood model




Deep Auto-regressive Models

• Directly model the joint distribution of all pixels in an image 
with auto-regressive conditionals.

P(x) =
D

∏
i=1

P(xi |xj<i)



Deep Auto-regressive Models

P(x) =
D

∏
i=1

P(xi |xj<i)

• Achieved state of the art performance in density estimation 
and image generation

Pixel Recurrent Neural 
Netowork. 

Oord et al., ICML 2016

• Directly model the joint distribution of all pixels in an image 
with auto-regressive conditionals.



Sparse Auto-regressive Models 
(SARM)

Idea: use a mixture model to learn the sparseness and 
non-zero pixel distribution separately
• SARM D+C: Discrete and Continuous Mixture Model
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• SARM D+C: Discrete and Continuous Mixture Model

Idea: use a mixture model to learn the sparseness and 
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• SARM D+C: Discrete and Continuous Mixture Model

Sparse Auto-regressive Models 
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Idea: use a mixture model to learn the sparseness and 
non-zero pixel distribution separately



• SARM D+D: Discrete Mixture Model:

Where  with probability , which is 
a function of  

xi ∈ {0,1,...,N} γi = (γi,0, . . . , γi,N)
x1, . . . , xi−1

• Drawbacks: more computationally intensive


• Advantage: easier to learn multimodal distribution in practice.

Sparse Auto-regressive Models 
(SARM)



Sparse Auto-regressive Models 
(SARM)

Multi-stage generation:


• Different models for central region and peripheral 
region to account for heterogeneous pixel distribution



Experiments 
Two Case Studies: 


• Jet substructure study


• Muon Isolation study


Training data for jet substructure study: Public dataset (Oliveira et 
al., 2017) simulated from Pythia 8.219 with energy 14 TEV, and jet 
transverse momentum pt between 250GeV to 300 GeV, 


• 400k signal images: jets originating from high energy W bosons, 


• 400k background images: jets originating from generic quark and 
gluons. 


• Each image has size 28 by 28. 



Experiments 
Baselines:  

• Monte Carlo Simulator (PYTHIA 8.219)


• LAGAN (Oliveira et al., 2017)


• Pixel CNN++ (Salimans et al., 2017)




Qualitative Analysis: Generated 
Images

Comparison of images produced by: SARM, LAGAN, and Monte 
Carlo Simulation (Pythia)


• Both SARM D+C and SARM D+D produce high fidelity mean 
images.


• Smoother transition from center to outer comparing images 
produced by LAGAN.
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Quantitive Analysis: High Level 
Observables

Earth mover’s distance between distributions  
of Pythia images and generated images 



Quantitive Analysis: Classification 
on Generated Images

High-level test of the image quality:


• Training data: images generated 
by different models (200k signal 
+ 200k background) 


• Evaluation data: Pythia images 
(20k signal + 20k background)


Better quality of generated images 
leads to better performance in the 
classification 
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All of the models are able to capture the pixel distribution in both 
signal and background datasets. 

Quantitive Analysis: 
Aggregated Pixel Intensity



Generation Speed: 

NN models are evaluated on 4 TITANX GPU each with 12G memory
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Conclusion: 


• SARM outperforms the state-of-the-art generative models by 24-52% in terms of 
Wassertein distance, in jet substructure study

• SARM is two orders of magnitude faster than Monte Carlo simulation, while being 
slower than GAN based generator. 

• Easy to expand to other studies involving sparse image generation, e.g. super 
resolution.
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Generation Speed: 

 
Yadong Lu, Julian Collado, Daniel Whiteson, and Pierre Baldi. Sparse autoregressive models for scalable generation of 
sparse images in particle physics.  Phys. Rev. D 103, 036012, 2021 
Yadong Lu, Julian Collado, Kevin Bauer, Daniel Whiteson, Pierre Baldi. Sparse Image Generation with Decoupled 
Generative Models. MLPS Workshop, NeurIPS 2019 

NN models are evaluated on 4 TITANX GPU each with 12G memory



Thank you and questions



Appendix
Effect of Generation Orders:

Non-random,  systematic generation  orders  that  have  good continuity and 
congruence properties perform well (and outperform random orders)



Appendix
Difference in the average images (generated - Pythia)


