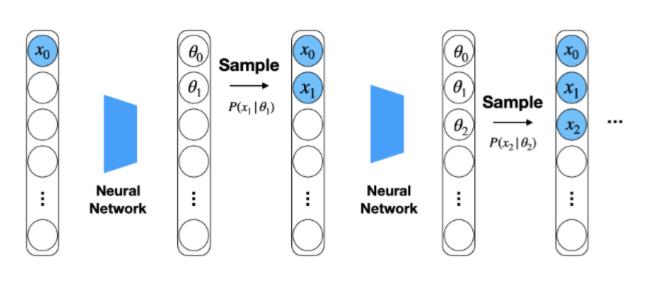
Sparse Autoregressive Models for Scalable Generation of Sparse Images in Particle Physics

- March 16th, 2021
- Joint work with Julian Collado, Daniel Whiteson, and Pierre Baldi



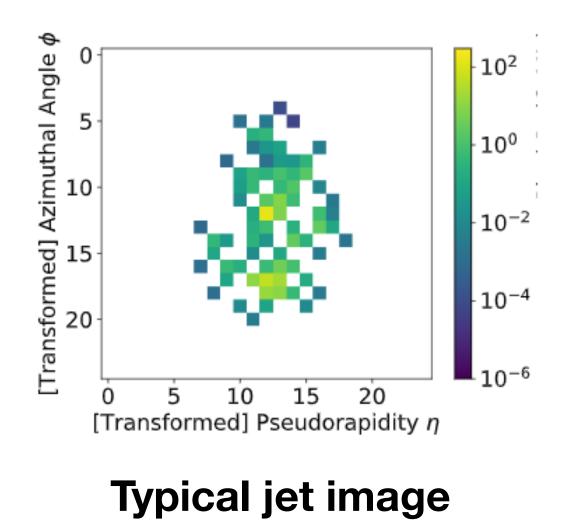
Yadong Lu

- Background
- Deep Generative Models in Jet Image Simulation
- Sparse Auto-regressive Models
- Experiments

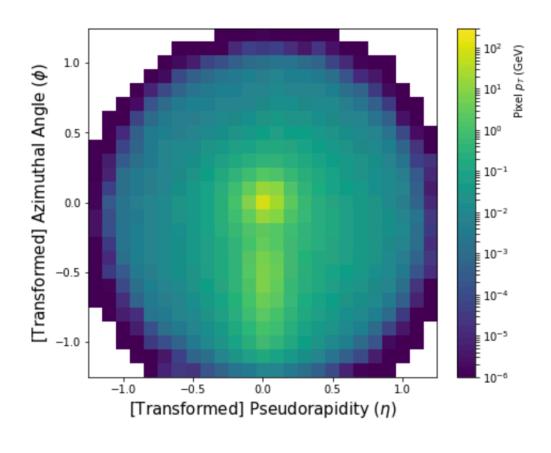
Content

Background: Jet Images

- **Data source:** Calorimeter, particle detector. \bullet
- lacksquaredepositions of the jets interacting with calorimeter.



Data format: *jet images* – 2D representations of energy



Averaged image

Background: Challenges of Simulation in HEP

- (where millions or more are needed).
- Space consuming: storing intermediate results in simulation.
- Need a large number of simulations to get events in kinematically unfavorable region.

• Time consuming: few seconds to simulate a single event

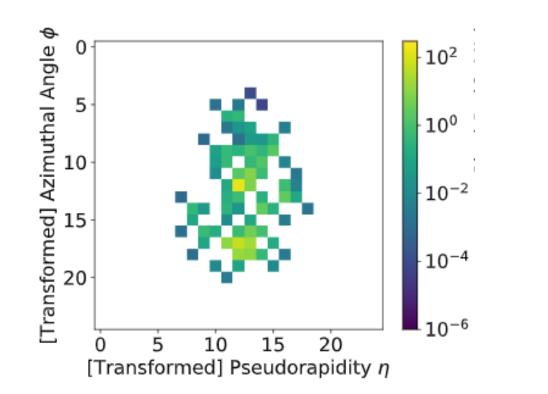
• **Goal**: Replace Monte Carlo sir which is **lighter** and **faster**.

• Goal: Replace Monte Carlo simulation with deep generative models

- **Goal**: Replace Monte Carlo simulation with deep generative models which is **lighter** and **faster**.
- Approach:
 - Distill knowledge from Monte Carlo simulation into neural network: density estimation of jet images.
 - Generate according to the learned distribution efficiently.

- **Goal**: Replace Monte Carlo simulation with deep generative models which is **lighter** and **faster**.
- Approach: \bullet
 - Distill knowledge from Monte Carlo simulation into neural network: density estimation of jet images.
 - Generate according to the learned distribution efficiently. \bullet

Challenges:



Natural images vs. Jet images.

• **Goal:** Replace Monte Carlo simulation with deep generative models which is **lighter** and **faster**.

• Approach:

- Distill knowledge from Monte Carlo simulation into neural network: density estimation of jet images.
- Generate according to the learned distribution efficiently.

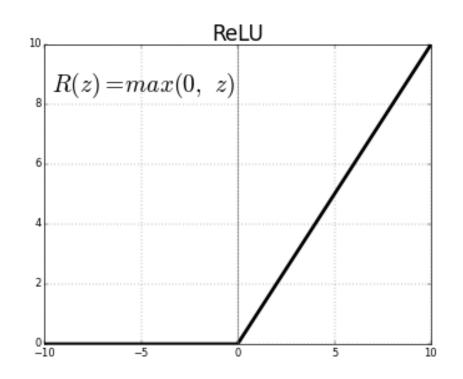
Challenges:

- Sparsity (93% pixels are zeros)
- Faithfully reconstruct distribution of high level observables which can be computed from the jet images, e.g. Mass, pT distributions.

Challenges with GAN:

- Unstable training and mode collapse (Nagarajan et al., 2017)
- Sparse gradient signal (LAGAN) Oliveira et al., 2017)
- No likelihood evaluation, less interpretable

Neither GANs nor VAEs produce a tractable marginal likelihood model



Deep Auto-regressive Models

with auto-regressive conditionals.

 $P(\mathbf{x})$

• Directly model the joint distribution of all pixels in an image

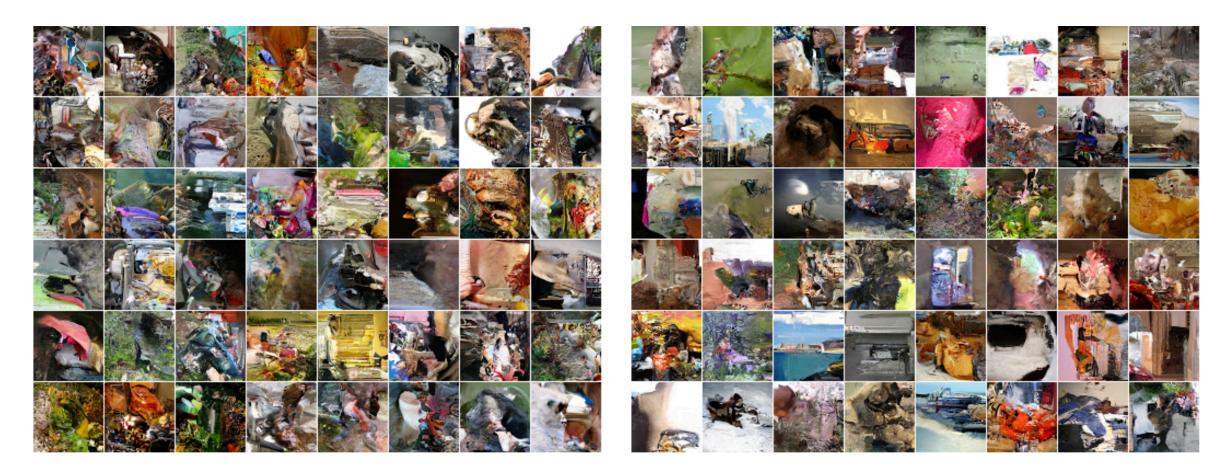
$$) = \prod_{i=1}^{D} P(x_i | x_{j < i})$$

Deep Auto-regressive Models

• Directly model the joint distribution of all pixels in an image with auto-regressive conditionals.

 $P(\mathbf{x})$

• Achieved state of the art performance in density estimation and image generation



$$P = \prod_{i=1}^{D} P(x_i | x_{j < i})$$

Pixel Recurrent Neural Netowork. Oord et al., ICML 2016

non-zero pixel distribution separately

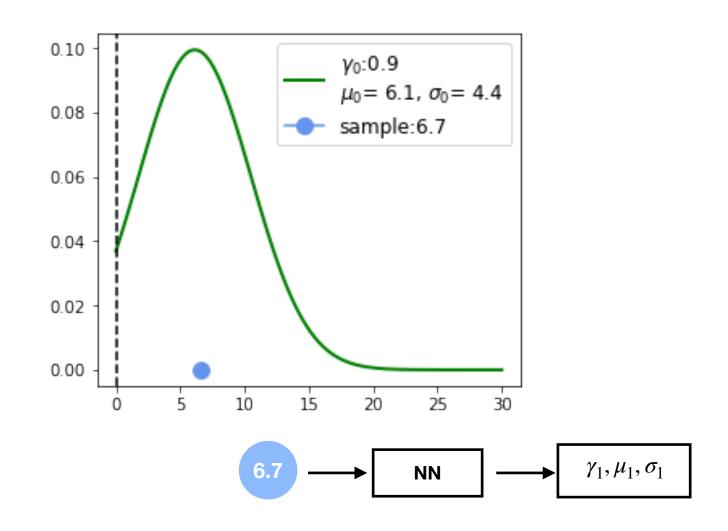
• **SARM D+C:** Discrete and Continuous Mixture Model

$$p(x_i|\theta_i) = \gamma_i \cdot \delta_{z_i=0} + (1 - \gamma_i) \cdot \delta_{z_i\neq 0} \cdot p(\tilde{x}_i|\mu_i, s_i)$$

- Idea: use a mixture model to learn the sparseness and

non-zero pixel distribution separately

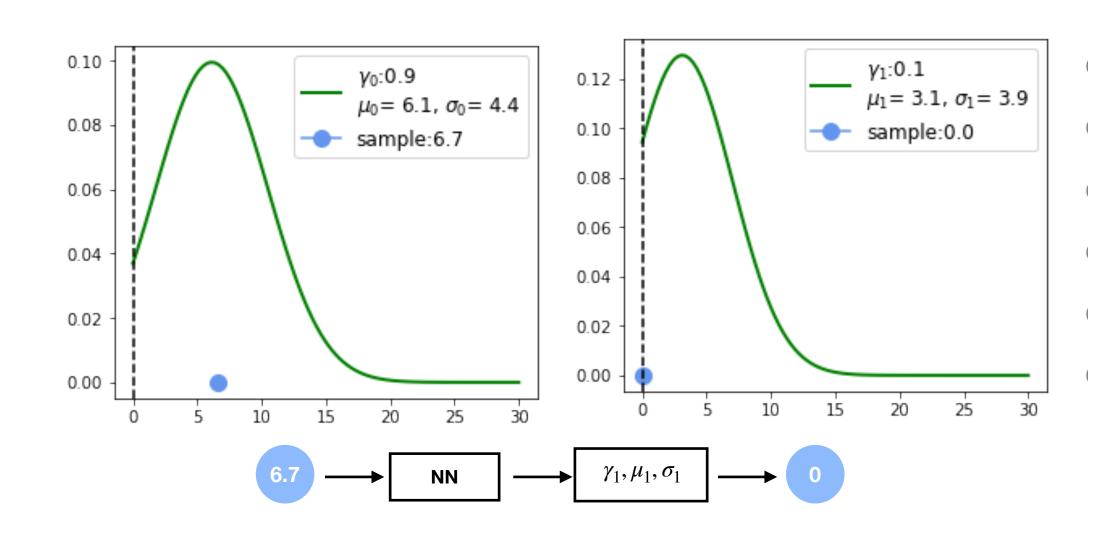
SARM D+C: Discrete and Continuous Mixture Model



- Idea: use a mixture model to learn the sparseness and

non-zero pixel distribution separately

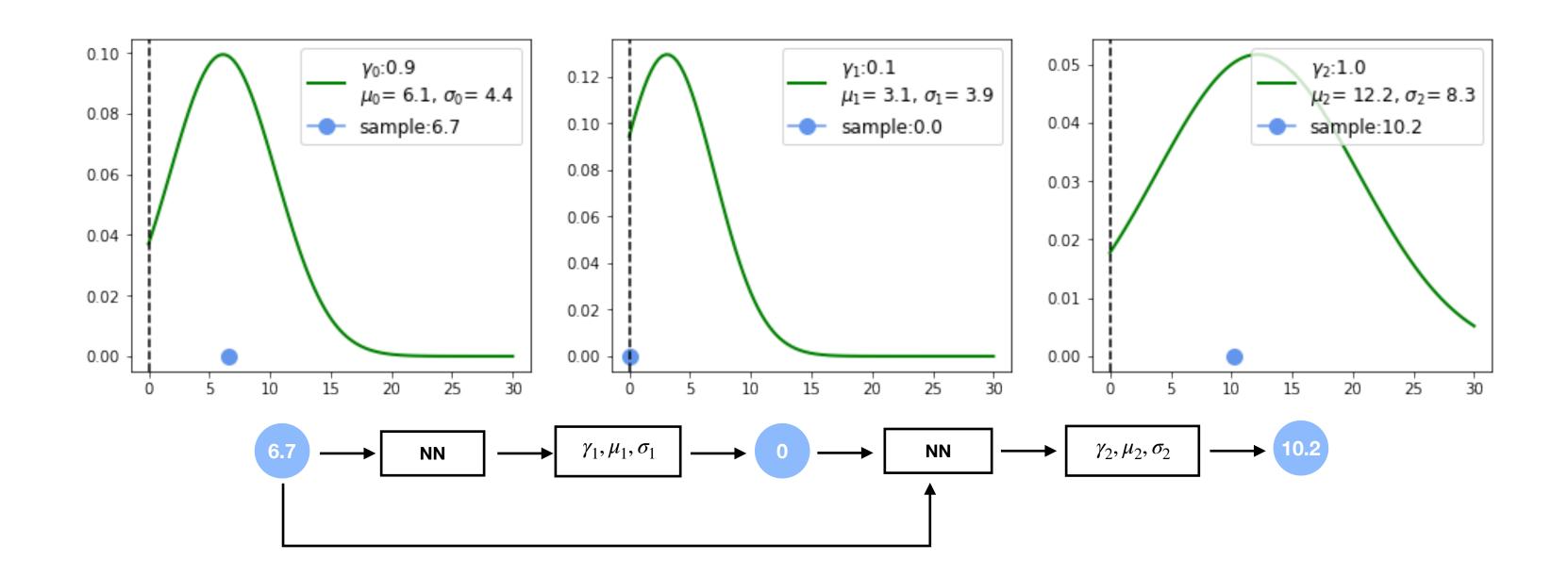
SARM D+C: Discrete and Continuous Mixture Model



- Idea: use a mixture model to learn the sparseness and

non-zero pixel distribution separately

SARM D+C: Discrete and Continuous Mixture Model



- Idea: use a mixture model to learn the sparseness and

• **SARM D+D**: Discrete Mixture Model:

 $p(x_i|\theta_i) = \gamma_i.$

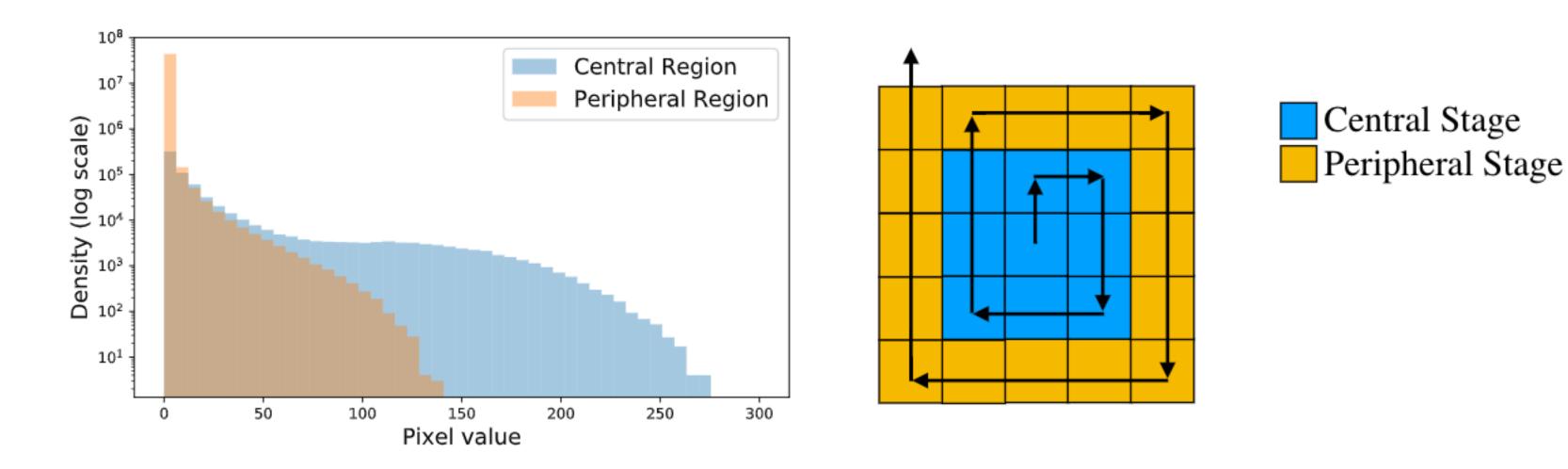
Where $x_i \in \{0, 1, ..., N\}$ with probability $\gamma_i = (\gamma_{i,0}, \ldots, \gamma_{i,N})$, which is a function of x_1, \ldots, x_{i-1}

- Drawbacks: more computationally intensive

$$_{,0} \cdot \delta_{x_i=0} + \sum_{j=1}^N \gamma_{i,j} \cdot \delta_{x_i=g_j}$$

• Advantage: easier to learn multimodal distribution in practice.

Multi-stage generation:



Different models for central region and peripheral region to account for heterogeneous pixel distribution

Experiments

Two Case Studies:

- Jet substructure study
- Muon Isolation study

transverse momentum pt between 250GeV to 300 GeV,

- 400k signal images: jets originating from high energy W bosons,
- 400k background images: jets originating from generic quark and gluons.
- Each image has size 28 by 28.

Training data for jet substructure study: Public dataset (Oliveira et al., 2017) simulated from *Pythia* 8.219 with energy 14 TEV, and jet

Experiments

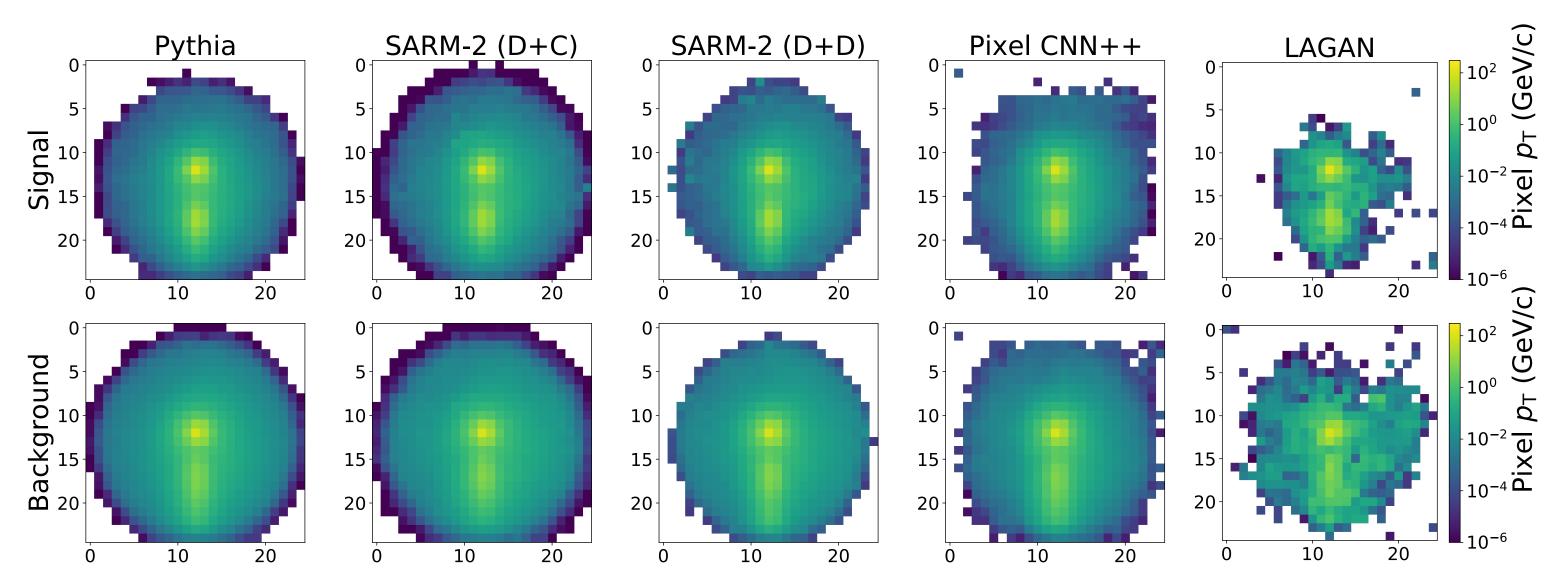
Baselines:

- Monte Carlo Simulator (PYTHIA 8.219)
- LAGAN (Oliveira et al., 2017)
- Pixel CNN++ (Salimans et al., 2017)

Qualitative Analysis: Generated Images

Comparison of images produced by: SARM, LAGAN, and Monte Carlo Simulation (Pythia)

- Both SARM D+C and SAI images.
- Smoother transition from produced by LAGAN.



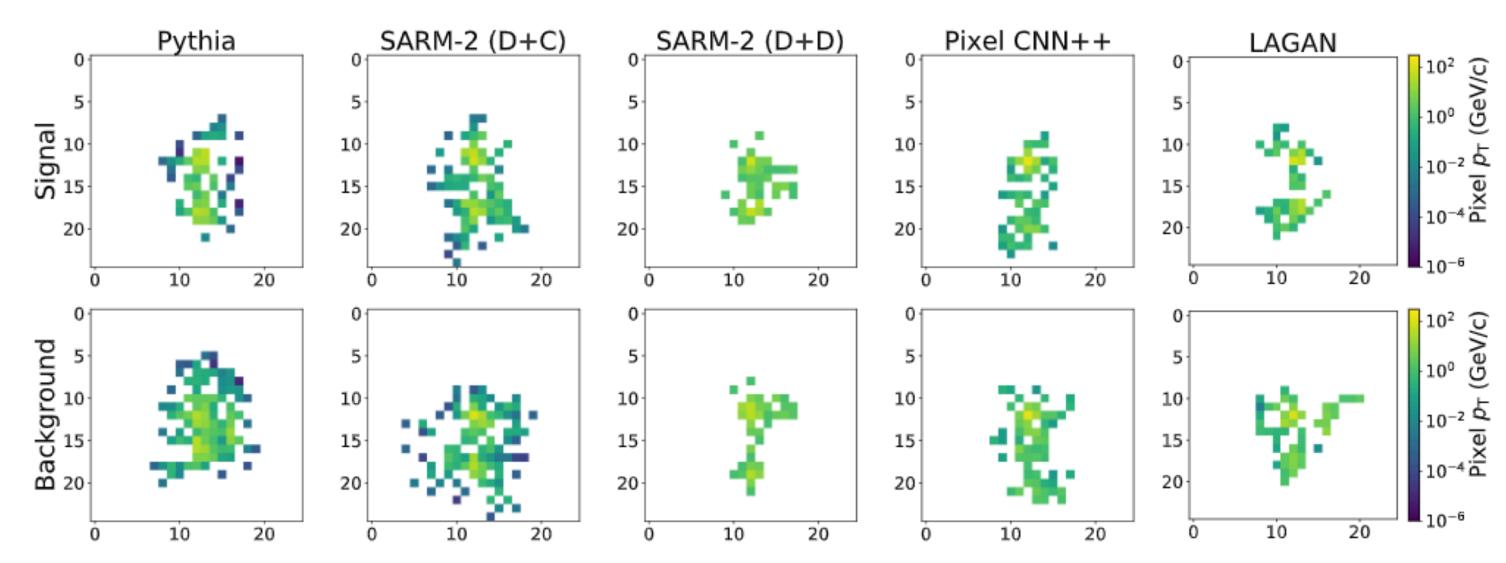
Both SARM D+C and SARM D+D produce high fidelity mean

• Smoother transition from center to outer comparing images

Qualitative Analysis: Generated Images

Comparison of images produced by: SARM, LAGAN, and Monte Carlo Simulation (Pythia)

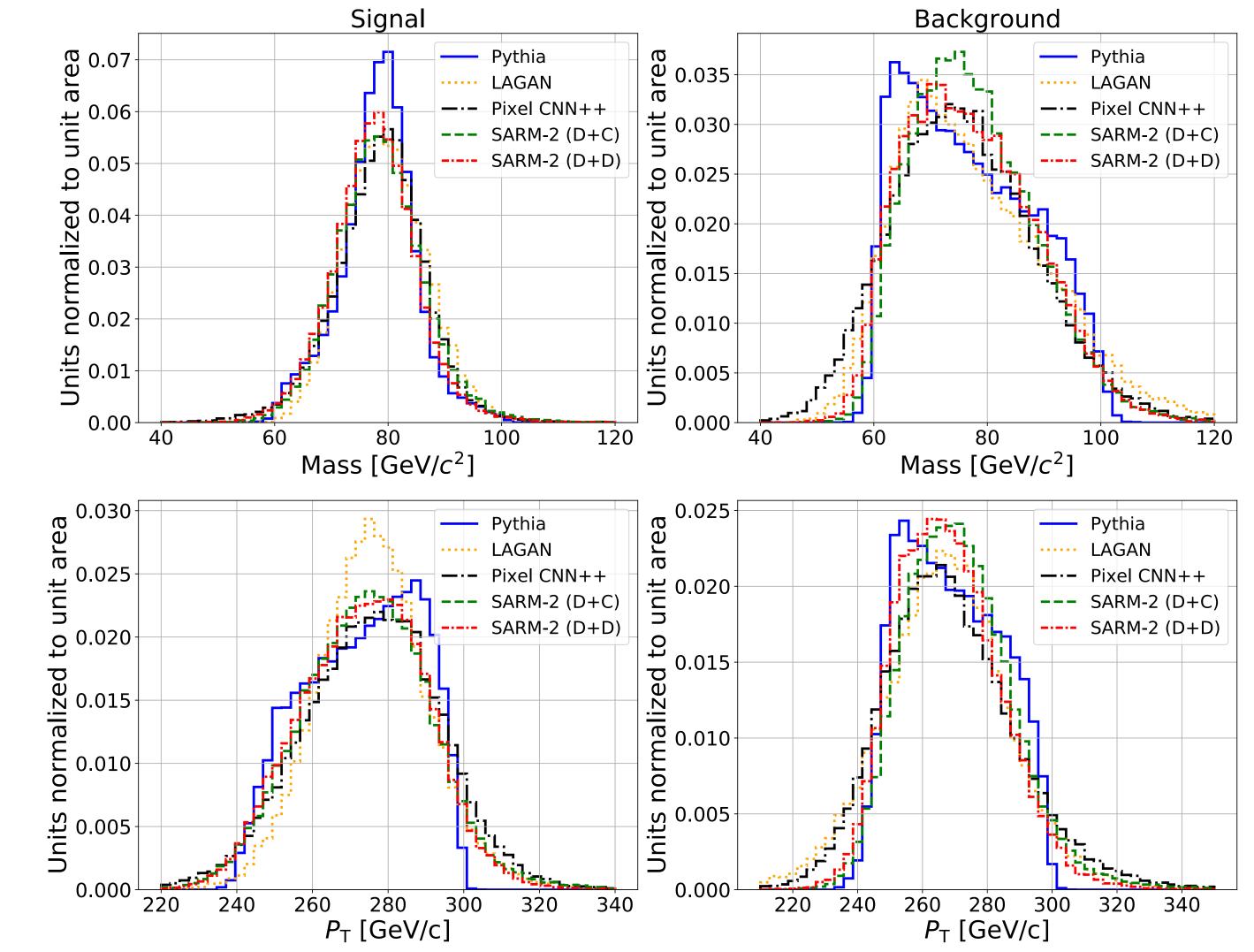
- Both SARM D+C and SA images.
- Smoother transition from produced by LAGAN.



Both SARM D+C and SARM D+D produce high fidelity mean

• Smoother transition from center to outer comparing images

Quantitive Analysis: High Level Observables



Earth mover's distance between distributions of Pythia images and generated images

		P_{T}		Mass
Model	Signal	Background	Signal	Backgroun
LAGAN	3.15	3.29	1.45	1.39
Pixel CNN++	3.46	3.59	1.09	1.56
SARM-1 $(D+C)$	2.33	2.46	1.07	1.54
SARM-2 $(D+C)$	2.32	2.71	1.06	1.39
SARM-1 $(D+D)$	1.95	2.52	1.34	2.45
SARM-2 (D+D)	1.44	1.66	0.94	0.92

Quantitive Analysis: Classification on Generated Images

High-level test of the image quality:

- Training data: images generated by different models (200k signal + 200k background)
- Evaluation data: Pythia images (20k signal + 20k background)

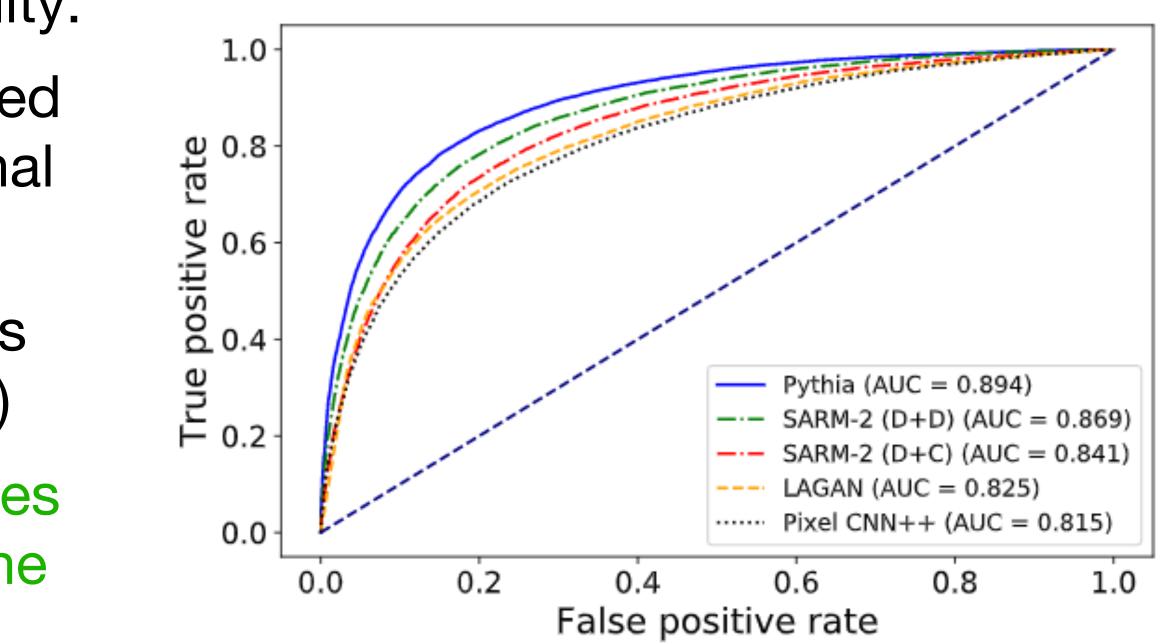
Better quality of generated images leads to better performance in the classification

Quantitive Analysis: Classification on Generated Images

High-level test of the image quality:

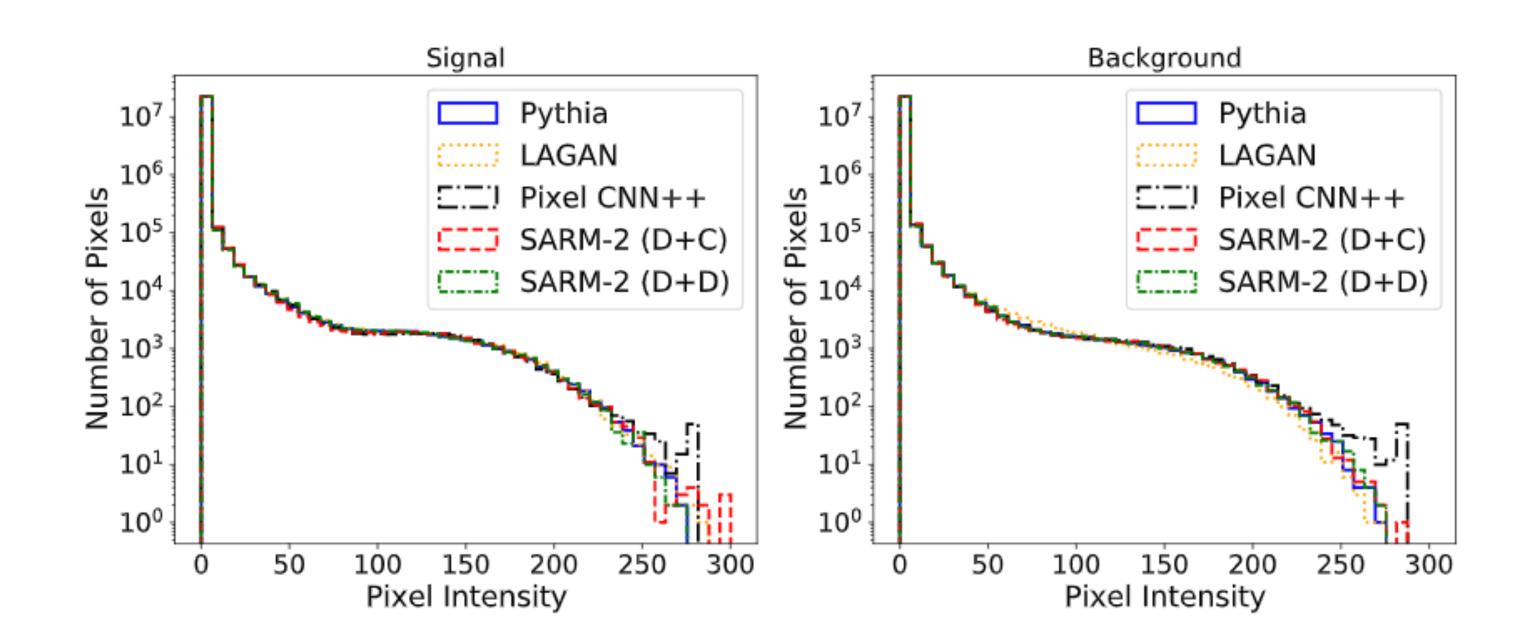
- Training data: images generated by different models (200k signal + 200k background)
- Evaluation data: Pythia images (20k signal + 20k background)

Better quality of generated images leads to better performance in the classification



Quantitive Analysis: Aggregated Pixel Intensity

All of the models are able to capture the pixel distribution in both signal and background datasets.



NN models are evaluated on 4 TITANX GPU each with 12G memory

Generation Speed:

Model Pythia [6] Pixel CNN++ SARM-2 (D+D SARM-2 (D+C LAGAN

	Speed (images/sec)
	34
	50
D)	1612
C)	2480
,	10176

NN models are evaluated on 4 TITANX GPU each with 12G memory

Generation Speed:

Model Pythia [6] Pixel CNN++ SARM-2 (D+D)SARM-2 (D+C)LAGAN

Conclusion:

- Wassertein distance, in jet substructure study
- slower than GAN based generator.
- resolution.

	Speed (images/sec)
	34
	50
D)	1612
C)	2480
/	10176

• SARM outperforms the state-of-the-art generative models by 24-52% in terms of

• SARM is two orders of magnitude faster than Monte Carlo simulation, while being

• Easy to expand to other studies involving sparse image generation, e.g. super

NN models are evaluated on 4 TITANX GPU each with 12G memory

Generation Speed:

Model Pythia [6] Pixel CNN++ SARM-2 (D+D)SARM-2 (D+C)LAGAN

Conclusion:

- Wassertein distance, in jet substructure study
- slower than GAN based generator.
- resolution.

Yadong Lu, Julian Collado, Daniel Whiteson, and Pierre Baldi. Sparse autoregressive models for scalable generation of sparse images in particle physics. Phys. Rev. D 103, 036012, 2021

Yadong Lu, Julian Collado, Kevin Bauer, Daniel Whiteson, Pierre Baldi. Sparse Image Generation with Decoupled Generative Models. MLPS Workshop, NeurIPS 2019

Speed (images/sec)
34
50
1612
2480
10176

• SARM outperforms the state-of-the-art generative models by 24-52% in terms of

• SARM is two orders of magnitude faster than Monte Carlo simulation, while being

• Easy to expand to other studies involving sparse image generation, e.g. super

Thank you and questions

Appendix

Effect of Generation Orders:

Spiral-out CCW Spiral-out CW Spiral-in CCW Spiral-in CW Row-wise Column-wise Random I Random I

Non-random, systematic generation orders that have good continuity and congruence properties perform well (and outperform random orders)

	$P_{\rm T}$ (std	.)	Mass	s (std)
V	1.94(0.	09)	1.38	(0.10)
	2.47(0.	23)	1.53	(0.22)
	3.64(0.	32)	1.62	(0.14)
	3.20(0.	22)	1.45	(0.16)
	3.06(0.	30)	2.01	(0.11)
	3.38(0.	39)	1.90	(0.08)
	4.05(0.		1.74	(0.53)
	3.41(0.	33)	1.25	(0.26)

Appendix

Difference in the average images (generated - Pythia)

