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Background
● Numerical simulations are crucial for accurately predicting cosmological observations 

and understanding the systematic effects in the current and future sky surveys, but 
they are computationally expensive.

https://www.youtube.com/watch?v=xfgDoExbu_Qhttp://www.sdss3.org/press/dr9.php

http://www.youtube.com/watch?v=08LBltePDZw&t=7
http://www.youtube.com/watch?v=xfgDoExbu_Q
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Motivations
● Deep generative models have been used in modeling structure formation

○ Predict tSZ signal, HI, dark matter annihilation feedback, super resolution, etc.

● Why not GANs?
○ Pro: Realistic looking samples
○ Con: Mode collapse. Low-dimensional manifold assumption leads to information 

loss. Potentially introduce systematics in data analysis.

● Physical constraints: translational and rotational symmetry
○ What people do now: let the model learn the symmetry by augmenting the training 

data. Performance not guaranteed. Increase the training work.

Full dimensional 
models like NFs

Enforce the 
symmetry in 

the generative 
model
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Normalizing Flows

● Bijective mapping f between data x and latent variable z  (z = f(x), z ~ π(z))

○ Sample: x = f-1(z)  (z ~ π(z))

○ Evaluate density: p(x) = π(f(x)) |det(df/dx)|

○ f = f1○f2○...○fn usually parametrizes with NNs. f should be easy to invert, Jacobian 
determinant |det(df/dx)| should be easy to evaluate.

○ Training objective: <log p(x)>
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NFs with translational and 
rotational symmetry 
● Convolutional neural networks in Fourier space:

○ Convolution:  ∫T(r-r’)x(r’)dr’                 T(k)x(k)                           T(k)x(k)  

○ Nonlinearity: any monotonic, differentiable functions 𝛹
                 
● Each layer: fi(x) = 𝛹i (F

-1 Ti(k) F x)

○ Translational and rotational invariant

○ Inverse transform: f-1i(x) = F-1 Ti
-1(k) F 𝛹i

-1(x)

○ Jacobian determinant: det(dfi/dx) = d𝛹i/dx 𝚷kTi(k)

● Deep model:  f = f1○f2○...○fn 

rotational symmetry

1D function. Model with 
cubic splines

1D function. Model with rational 
quadratic splines, which is 

continuously differentiable and 
analytically invertible (Gregory & 

Delbourgo, 1986)

FT
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NFs with translational and 
rotational symmetry 
● Enforcing translational and rotational symmetry

○ No data augmentation.
○ Fewer parameters: Nlayer*(3*N𝜳_knot+2*NT_knot) ~ O(1000)  for  d ~ 104

○ Faster training.
○ Less overfitting. Better generalization.

● Normalizing Flow structure:

○ Efficient sampling and density estimation.
○ logp training. Better coverage of the data.
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Conditional NFs
● Build generative models conditional on physical parameters y (cosmological parameters, 

baryon physics parameters, redshift, noise, calibration parameters, etc.)

○ f(x) = fy(x) :     T(x) = Ty(x) ,   𝜳(x) = 𝜳y(x)

○ Model the conditional dependence:  y                    the knots of Ty and 𝜳y

○ Training objective: log-likelihood log p(x|y)                         posterior distribution!

●  X                         X1                        X2                          ……                           Z

NN

T1, 𝜳1

𝛹1 (F
-1 T1(k) F X)

y

T2, 𝜳2

𝛹2 (F
-1 T2(k) F 

X1)

y

T3, 𝜳3

𝛹3 (F
-1 T3(k) F 

X2)

y

TN, 𝜳N

𝛹N (F-1 TN(k) F 
XN-1)

y

with non-gaussian information

NN NN NN NN
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Experiments
● Data: 2D dark matter overdensity field at redshift 0

○ 512 h-1Mpc Box, 128 h-1Mpc slice, 128 x 128 mesh.

○ Vary cosmology parameters Ωm∈ [0.2, 0.5] and σ8∈ [0.5, 1.1] (conditional variable 
y).

○ Generated by N-body solver FastPM.

● Model: convolutional rotation/translation invariant normalizing flow

○ Nlayer = 5, N𝜳_knot = 8, NT_knot = 128

○ Conditional NN: MLP with 2 hidden layers of Nneuron = 512
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Preliminary Results -- Samples
● sample:● data:

more clustering
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Preliminary Results -- Samples

● power spectrum: ● bispectrum: 

Measured over 10000 samples

● 1-D probability distribution function
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Preliminary Results -- Latent 
variables

data

correct cosmology

Incorrect cosmology
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Preliminary Results -- Posterior analysis
● This approach learns likelihood p(x|y) 

directly: full posterior distribution via 
p(y|x)=p(x|y)p(y)/p(x)

● Aims to capture all the information of the 
data               optimal posterior analysis

● This is very different from Likelihood Free 
Inference or ABC, which use suboptimal 
summary statistics S and build their p(y|S) 
or p(S|y)

● Figure of merit (inverse of the area of the 
68% confidence region): 

○ power spectrum: ~ 176
○ normalizing flow: ~ 1065
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Discussion
● Current and future works:

○ Apply the model to other (noisy) observables (weak lensing, galaxies, tSZ, etc.). 
Adding translational / rotational invariant noise is easy (train with noise).

○ Use this model to learn the relation / mapping between baryon and DM.
○ Explore training with p(y|x).

● Challenges: the translational and rotational symmetry is broken

○ Redshift space distortion: T(k)               T(kr, kz)
○ Survey window function: adding non convolutional layers (e.g. add SINF)
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Conclusions
● We introduce a NF model that explicitly satisfies the translational and rotational symmetry. 

These symmetries reduce the degrees of freedom and enable the model to scale well to high 
dimensions. 

● Compared to other generative models like GANs, this model is bijective (no information 
loss), is easier and faster to train, has better coverage of the data, and allows exact 
density (likelihood) evaluation p(x|y).

● We apply the model for generating DM density field conditional on Ωm and σ8. We show it is 
able to generate realistic samples that agree well with the data on various summary statistics, 
and the data is visually mapped to a Gaussian. We show that its likelihood gives much tighter 
constraints on cosmological parameters than standard power spectrum analysis. If NF 
maps to a perfect Gaussian then p(x|y) enables optimal posterior analysis of cosmological 
data. 



15

● This is for data without translational/rotational  
invariance

● Iteratively building the NF based on optimal 
transport on 1D slices

● GIS trains in Gaussian space: achieves the best 
        density estimation results on small training sets.

● One line code:

2007.00674
https://github.com/
biweidai/SIG_GIS 

Sliced Iterative Normalizing Flows 
(SINF)
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Sliced Iterative Normalizing Flows 
(SINF)

● (SIG) trains in data space: allows directly optimizing the distribution of samples

2007.00674
https://github.com/b

iweidai/SIG_GIS


