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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

4Generative Models for Fundamental Physics Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582

Material Interactions with High Energy Particles

M. Mustafa, et al., Comp. Astrophysics and Cosmology 6 (2019) 
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5Fund. Physics + Deep Gen. Models

Deep generative models can be used to replace/
supplement slow physics-based simulations

They can allow us to build unbinned approximations 
of (conditional) densities via sampling  

(or directly)

…

They can be trained directly on unlabeled data to 
infer the underlying physical processes of our data



6Tools

GANs
Generative Adversarial Networks

NFs
Normalizing Flows

VAEs
Variational Autoencoders



7Reminder: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data



8

Variational Autoencoders (VAEs):  
A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Reminder: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder



9Reminder: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood



10Challenges for Fund. Physics

How to optimize training, when to stop?  
(Harder to validate than classification)

How to diagnose and avoid mode collapse?

How to incorporate physics knowledge?   
Our data are often very different than cats/dogs/celebrities

What is the statistical power of generated samples?  
(See e.g. 2008.06545)

How do we achieve precision?  How about uncertainties?
…



11Plan for today



12Please enjoy the workshop!

If you have ideas for future focused workshops, please let us know.

Please ask questions and if we run out of time during the talks, 
please bring it up again during the discussion at the end!



13Additional resources

Unsupervised learning course at UC Berkeley: 
 https://sites.google.com/view/berkeley-cs294-158-sp20/home

NERSC summer school: 
Emily Denton (Google Brain) [2019], 

Aditya Grover (Stanford) [2020]

Living review for HEP: 
https://iml-wg.github.io/HEPML-LivingReview/  

(see specialized reviews section 
 for generative models)

https://drive.google.com/file/d/1K7WiEYeyJs8mGjYAlBvMnXGxcsNM6rui/view
https://dl4sci-school.lbl.gov/aditya-grover
https://iml-wg.github.io/HEPML-LivingReview/
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