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Outline

• Some motivation for studying the CMB.


• Why we have to understand the Galaxy, and why it is hard. 


• Recent developments in generative modeling of Galactic components.


• Variational Autoencoders.


• Successes and failures of our VAE application.



Background



CMB



Left: South Pole Telescope

Above: Keck Array



CMB Analysis
Standard approach

95 GHz E signal

−65

−60

−55

−50

150 GHz E signal

−65

−60

−55

−50

Right ascension [deg.]

D
ec

lin
at

io
n 

[d
eg

.]

220 GHz E signal

−50050

−65

−60

−55

−50

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

µ
K

µ
K

µ
K

CMB E-mode polarization, as measured by BICEP / 
Keck Telescope at the South Pole (BKP 2019).

• Measure polarization of CMB. Look for 
signal of primordial gravitational waves 
present at recombination, smoking gun 
of inflation.


• Curl-like pattern (B-mode), 
parametrized by a scalar .


• CMB expected to be Gaussian - 
compress to power spectrum and  infer 
constraint on  from bandpowers.
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CMB Analysis
Current problems

• Pattern induced by non-zero  is 
mimicked by: 


• Lensing of the CMB by large scale 
structure leaks E-mode power into 
B-mode power.


• Polarized emission by interstellar 
dust in our own galaxy.


• Need to model both effects to 
constrain  in future low-noise 
observations.
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Foreground power on degree scales at cleanest frequency, and in cleanest 
region of sky, exceeds power due to primordial B-modes (BKP 2019).



Optimal Bayesian Delensing and Foreground Removal
Millea + 2020a,b (Bayesian Delensing Delight, and applied to SPTPol data)

• In order to deal with lensing in an optimal way, forward model the whole 
problem at the map level. Inherently optimal, but computationally challenging.

d = 𝔸𝕃(ϕ)f + n

Lensing field

CMB field

log p( f, ϕ, Aϕ, r |d) ∝
(d − 𝔸𝕃(ϕ)f )2

ℂn
+

f2

ℂf(r)
+

ϕ2

ℂϕ(Aϕ)

Tensor-to-scalar ratio

d = 𝔸𝕃(ϕ)f + 𝔽(β)gdust + n
Foreground field

• Posterior is relatively simple:

• Adding foregrounds to the data model:



• Can use a Gaussian prior on this field, 
equivalent to power spectrum level 
modeling? 


• Can we learn more about its statistics, 
and perhaps even a Bayesian inference 
model, using machine learning?


• At the least we would like to develop 
simulations with non-Gaussian 
foregrounds to test our Bayesian 
inference pipeline.


• Difficulty is that we have only one sky to 
measure, and simulations do not yet 
cover the full range of angular scales we 
are interested in for CMB experiments.

Foreground models
How do we model p(gdust)

CMB (top), synchrotron Q and U, and 
dust Q and U  (Planck Collaboration 

2015)



Aylor + 2021
Trained GAN to produce intensity samples

Test set data (top row) and samples from trained GAN 
(bottom row) presented in Aylor+2021.

• GAN trained on dataset consisting of cutouts from 
Planck 545 GHz GNILC map.


• Samples reproduced correct summary statistics: pixel 
value histograms, power spectra, Minkowski functionals.


• Unstable training process, difficult to reproduce.


• Stochastic, but not particularly diverse images are 
generated.

Minkowski functionals of GAN-generated 
images compared to data.



Krachmalnicoff & Puglisi 2020
Small-scale realizations using GANs
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• Developed to generate high-resolution 
polarization simulations, conditioned on low-
resolution observations.


• Full sky through a tiling method.


• Deterministic - due to method of training there is 
no stochasticity in the generated dust images.


• Some summary statistics are not reproduced 
(e.g. EE / BB ratio of small scales)

m̃ real
SS

m̃ mock
SS

Minkowski functionals of GAN-generated 
small-scales compared to data.



Model Setup




Variational Autoencoders

• Model density as .


• Approximate conditional density with a neural 
network: .


• Introduce second network to approximate 
posterior: .


• Infer  by maximizing the evidence lower 
bound on the log likelihood:

p(x, z) = p(x |z)p(z)

p(x |z) ≈ pθ(x |z)

p(z |x) ≈ qϕ(z |x)

θ, ϕ
x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

ℒ(θ, ϕ; x) = 𝔼qϕ(zx) [ln pθ(x |z)] − 𝔻KL(qϕ(z |x) | |pθ(z))

Background



Architecture

•  is a 256-dimensional 
normal distribution.


•  is assumed to be a 
normal distribution, parametrized 
by a set of simple transpose 
convolutions.


•  is assumed to be 
Gaussian, and parametrized by a 
set of simple convolutions.

pθ(z)

pθ(x |z)

qϕ(z |x) x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Variational Autoencoders



Training Set
Planck GNILC maps

• Planck GNILC intensity map at 545 GHz.


• Perform Cartesian projection on 64 sq. 
degree patches at , roughly 75% 
of sky, and 2254 cutouts.


• Randomly separate maps into 70% 
training set, 15% validation set, 15% test 
set.


• Augment training set with random flips 
and rotation applied on a per-image basis.

l > 15∘

GNILC map in intensity at 545 GHz (Planck Collaboration 
XLVIII 2016).



Validation



Reconstructions

• For each test set image compute the 
mean predicted map:


• Compute the residuals, , and 
cross correlate them with the input map: 

xres = x̃ − x

Cres
ℓ = ⟨xxres⟩
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Summary Statistics

• Compute pixel histograms and 
power spectra on each test set 
image.


• Importantly, we recover summary 
statistics consistent with the test set, 
up to a particular scale. 

• Past scales corresponding to 
, reconstruction quality 

declines sharply.


• This is uniform across all 
reconstructions in the test set.

ℓ ≈ 400
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Semantic Interpolation: 
Validation

z1,2(λ) =
sin((1 − λ)θ)

sin θ
z1 +

sin(λθ)
sin θ

z2

z1 = z(λ = 0) z2 = z(λ = 1)z(λ)



Application



Data Imputation

• Applying this to a denoising and inpainting problem. 
For data containing white noise, , and pixel-wise 
masking , we can write down an expression for log 
posterior:


• Substituting expressions for the prior, and in the case 
that the reconstruction error is smaller than the 
noise:


• In principle, this posterior can be sampled from to 
characterize the posterior uncertainty in the 
reconstructed image. Here we simply obtain a single 
MAP estimate by maximizing this quantity.  

σ
𝖠

Application

log p(z |d) = log p(z) + log pθ(d |z) − log p(d)

−2 log p(z |dtest) ∝ zTz +
μθ(z)Tμθ(z)
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Sampling
(Very preliminary work with Marius Millea)
Remembering the Bayesian analysis pipeline we are interested in, we can write down our model:


We simulate some mock data by taking a test set image, adding simulated CMB, beam smoothing, 
and adding noise. We then jointly sample the CMB fields, lensing potential, and dust latent space 
parameters:

d = 𝔸𝕃(ϕ)f + 𝔽(β)gdust + n



Conclusions

• We have built a variational auto encoder to perform density estimation for dust images.


• We successfully reconstruct test set images up to a scale of , beyond which 
we suffer rapid suppression of power.


• Novel samples are of a poor visual quality, and do not recover the correct statistics.


• Conditioned on corrupted real data, we perform realistic inpainting of Galactic 
foregrounds.


• The failure points seem consistent with a prior that is ill-fitting the true data posterior 
distribution. Currently we are exploring ameliorating these, e.g. 2-stage variational auto 
encoder, or considering more flexible flow-based encoders.

ℓ ≈ 400



Backup Slides



Prior Samples, x ∼ pθ(x |z)p(z)
Validation



Power spectra of prior samples
Validation
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Comparison of generative models

Variational 
Autoencoders GANs Normalizing Flows

Bayesian Inference

Stable Training 

Competitive 
Resolution

Tractable in High 
Dimensions
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