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Stellar Streams

Stellar streams are cold, tidally-stripped remnants of 
globular clusters and dwarf galaxies, falling into and 
orbiting our galaxy.  

They are very interesting objects of study for 
astrophysicists and particle physicists.  
In particular, they could be unique 
probes into dark matter substructure. 



The Gaia satellite

Credit: ESA/Gaia/DPAC CC BY-SA 3.0 IGO

Gaia’s image of the Milky Way



The Gaia satellite
The Gaia satellite is providing an unprecedented window into 
the stellar population of our Galaxy: 

• Launched in 2013; extended to 2025  

• Mission: map out the full 6d phase space + photometry of the stars in our 
galaxy 

• Angular positions, velocities, color, magnitude of over 1 billion stars in 
our galaxy 

• radial positions and velocities for a smaller subset of nearby stars (not used 
in this work)

Credit: ESA/Gaia/DPAC CC BY-SA 3.0 IGO

A potential gold mine for stream finding!



Stream finding: previous approaches
https://github.com/cmateu/galstreams



• Some streams (eg Sagittarius) are large and bright enough to even see by eye 

• Many streams were previously discovered in other deep surveys (eg DES, SDSS) and were 
reconfirmed in Gaia data, often using special tracer stars like RR Lyrae 

• Several automated algorithms for stream finding in the bulk of the Gaia data exist; the most 
successful so far is STREAMFINDER (Malhan & Ibata 2018). These algorithms have found 
many new streams in the Gaia data, but they all make a number of model-dependent 
assumptions (form of the galactic potential, orbits, isochrones, galactic merger history…).   

• Our goal: an automated stream-finding algorithm that 
• Uses only bulk Gaia data 
• Does not assume a Galactic potential or orbit 
• Does not assume stream stars lie on a particular isochrone 

Stream finding: previous approaches



Stream finding

Streams are local overdensities in position, velocity and photometric space. 

• Since they are cold, the stars in the stream are clustered in velocity 

• The stars in a (globular cluster) stream are all born at approximately the same 
time — they should lie on an isochrone in color-magnitude space

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)
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Anomaly Detection for Streams
• The problem: we have data, drawn from some probability distribution 

• The signal and background probability distributions are different: 

• The optimal statistic for distinguishing signal from background is the ratio 

• Signal dominates wherever                    .  
•  The problem: How do we determine both           and              ?  Especially in something as 

complicated as the Galaxy.

“features” 
(position, velocity, color, etc)
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ANODE (Nachman and Shih, 2020)
• Pick one feature m where signal is known to be localized. Define a 

“search region” (SR) by  
• Learn conditional densities p(x|m∈SR) and p(x|m∉SR)=pbg(x|m∉SR) 

• Made possible in high dimensional data using recent progress in 
density estimation (esp normalizing flows; see also GIS Dai & 
Seljak 2020) 

• Via Machinae uses Masked Autoregressive Flows (MAF) 
(Papamakarios et al 1705.07057) 

• Interpolate pbg(x|m∉SR) in m to obtain pbg(x|m∈SR) 

⟹
R(x|m) =

p(x|m)

pbg(x|m)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Directly construct optimal discriminant in the SR: 



GD-1 Example
• GD-1 is a bright stream with stellar catalogues of stream membership (Price-Whelan and Bonaca, 2018) 

• Provides a good worked example for Via Machinae (Shih, Buckley, Necib, Tamanas in prep) 

• Streams are concentrated in both       and      , with a width of a few mas/yr. 
• We will pick       as the feature      to define our overlapping search regions (SRs) 
• Width 6 mas/yr for each SR, neighboring SRs separated by 1 mas/yr  

Stars identified as likely GD-1 members by Price-Whelan & Bonaca

An example SR



GD-1 Example
• For each SR within each patch, we train ANODE on the stars in the SR, using the 

complement of the SR as the control region. 
• For each star, we now have
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Beyond GD-1

For GD-1 it is enough to cut on R(x) and inspect 
the stars passing the cut by eye.



Beyond GD-1

For GD-1 it is enough to cut on R(x) and inspect 
the stars passing the cut by eye.

For other known streams, we found it is 
generally not enough.
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Results: known streams

Via Machinae successfully 
finds known streams!



New stream candidates
We are currently investigating ~580 
new stream candidates.

Some look promising — stay tuned!



Conclusions
• How to validate the 580 new stream candidates?  

• Cross matching with other catalogues?  

• Follow up observations? 

• Improvements to R(x)? 
• More detailed hyperparameter tuning  

• Other even more powerful neural density estimators 

• Alternatives to ANODE method — CWoLa in Space? Work in progress with 
Buckley, Collins, Nachman & Thanvantri 

• Are we finding other objects besides streams?  
• globular clusters!! 

• debris flow? 

• Other uses for density estimation? e.g. 
• stream membership?  

• mock catalogues?

“Kinematics of the Palomar 5 
Stellar Stream from RR Lyrae 
Stars” Price-Whelan et al (2019)
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Future directions: modeling the galaxy?
• We’ve trained normalizing flows on the positions, proper motions, color and magnitude of the 

stars in the Gaia data. 
• These normalizing flows can be sampled from:



Future directions: modeling the galaxy?
• We’ve trained normalizing flows on the positions, proper motions, color and magnitude of the 

stars in the Gaia data. 
• These normalizing flows can be sampled from:

Could there be interesting applications to 
astronomy/astrophysics?


• Mock catalogs?

• Measuring the potential of the Milky Way?


Would be happy to discuss further!



The End



Gaia Data
• We restrict ourselves to distant stars: parallax < 1 mas 
• Available features: 2 angular positions, 2 proper motions, magnitude    , color 
• ANODE training times grow with number of stars, so we select patches of stars within 15o of 

centers that tile the sky, every star within 7o of a center. 
• Discontinuities in probability densities cause errors in                                                         

the MAF density estimate. We train on the full patch                                                          
and use fiducial region of inner 10o and 

• Recenter the angular positions on patch center:



Regions of Interest (ROIs)
Instead, we needed additional cuts, in combination with a cut on R, to improve 
signal over background.


“Region of Interest”: window of width 6 in mu_lon (the other p.m. coord.) + 
color cut of 0.5<b-r<1
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Regions of Interest (ROIs)
Instead, we needed additional cuts, in combination with a cut on R, to improve 
signal over background.


“Region of Interest”: window of width 6 in mu_lon (the other p.m. coord.) + 
color cut of 0.5<b-r<1


ROI + cut on R => stream can be found!

µlat = µ�
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Hough transform: 

• Each point in scatter plot seeds a family of lines that pass through it. 

• Lines described by parameters (θ,ρ) that lie on a sine curve. 
 
 
[usual slope/intercept parametrization leads to singularities] 

• Significant line detection: many curves intersecting at same point in Hough space

Hough transform for automated stream detection
There are 140,000 ROIs in the all-sky dataset. Need an automated 
method for stream detection! 
Across a single patch, streams are likely to be line-like (but 
possibly wide). 
Idea: use age-old ML technique (Hough transform, 60s-80s) to 
automate line detection. 

4 Shih et al.

Based on the proper motion properties of known streams, we choose
each SR within a patch to be a window in `_ of width 6 `as/yr,
stepping in units of `_ = 1 `as/yr, with each SR then defined by the
choice of [`min

_ , `
max
_ ]:

[`
min
_ , `

max
_ ] = . . . , [�10,�4], [�9,�3], . . . , [3, 9], [4, 10], . . . (4)

in units of `as/yr. The complement of the proper motion window
defines the control region (CR) for each SR. Each of these choices of
(U0, X0, `

min
_ ) furnishes a search region and control region pair for

the V�� M������� training step. Overlapping the SRs in this way
allows us to fully capture potential streams in at least one `_ window
when performing a blind search – if the SRs were not overlapping,
then a stream could easily fall at the edge of two SRs, diluting the
signal in each. By selecting SRs which are wide enough in proper
motion to fully contain a kinematically cold stream and overlapping
them by shifts which are smaller than the proper motion width, we
minimize the possibility of this dilution (though this choice increases
the statistical cost of the look-elsewhere e�ect). We finally obtain
533 total SRs that contain GD-1, on which we perform the ANODE
training on.

3.3 Defining the regions of interest

After performing the density estimation on the 533 SRs and asso-
ciated CRs derived from the patches that contain GD-1, we obtain
'(ÆG |`_) for every star in each SR. Since the SR are highly overlap-
ping, each star generally has more than one ' value attached to it.
Ideally, one would just cut on ' > 'cut for some threshold 'cut in
each search region, and all remaining stars would be stream members.
Unfortunately, this does not work: likely the signal to background ra-
tio is simply too small, and the complexity of the Galaxy means that
too many stars that are not in streams are anomalous compared to
their neighbors. Instead we must combine a cut on ' > 'cut with
additional cuts in order to better purify signal to noise and be able
to detect streams. [LN: @David: I think we might need something
else here, because this paragraph reads like "ok, there are problems"
without any real explanation or example of things going wrong. I
think we need a figure/data/appendix that exemplifies this and justi-
fies these choices.] We explicitly discuss these further cuts in what
follows.

Up to this point, our method has been agnostic to the astrophysics
of stellar streams (beyond the choice to use proper motion as our
SR-defining feature). Stars tagged as anomalous by the ANODE
training may be streams, tidal debris, or some other structure in
the Milky Way’s velocity-space – as we have already noted, globular
clusters are highly anomalous in their ' variable. The cuts that follow
are designed specifically to find cold stellar streams similar to the
ones identified previously in data; di�erent cuts and/or choices of
parameters could be used to focus on other interesting astrophysical
structures. The cuts we choose are:

• After running ANODE, we define a fiducial region of 10�

around the center of the patch in (q, _) position space and a mag-
nitude cut of 6 < 20.2. As previously discussed, this is to avoid
edge e�ects from the density estimation, and also because the dim
stars lead to streaking and other artifacts in the Gaia DR2 data (Gaia
Collaboration et al. 2018).

• We also remove all stars within a box around zero proper motion
of width 2 `as/yr. That is, we require

|`_ | > 2 `as/yr OR |`q⇤ | > 2 `as/yr. (5)

Recall that the ANODE training identifies stars within the SR that

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly stars which are extremely distant from the Sun [LN: @Matt:
Reference a figure (even one that’s in the appendix to show this)];
this population is not well-represented in a CR that does not contain
(`q⇤ , `_) ⇠ (0, 0) `as/yr. If the SR contains this zero point, the
distant stars are (correctly) identified as anomalous relative to the
population in the control regions, but their sheer number completely
overwhelms any other signal in the SR, requiring their removal after
training is complete.

• Known stellar streams are predominantly composed of old, low
metallicity stars. Many existing stream-finding algorithms leverage
this by fitting stars in the stream candidate to isochrones appropriate
to this assumption (see e.g. Malhan & Ibata (2018)). Though our
ANODE training is agnostic to such assumptions, in this work we
are interested in identifying old cold streams. To that purpose, we
select stars in the color range populated by old, low-metallicity stars
(the expected constituents of streams produced by tidally stripped
globular clusters or dwarf galaxies), requiring (1 � A) 2 [0.5, 1]
(Marigo et al. 2008). This cut is e�ective at improving signal to noise,
and was observed to greatly improve the performance of ANODE
at finding the known streams [LN: @Matt: Again, I would reference
a plot in the appendix here]. There may be interesting anomalous
structures outside of this color range, which will be investigated in a
future work.

• Finally, to further isolate any potential streams, we subdivide
the SRs defined by windows of `_ into overlapping windows of `q⇤ ,
with width 6 `as/yr and a stride of 1 `as/yr [LN: @David: Is there
a justification for these numbers?]. We call these windows regions
of interest (ROIs) and they are labeled by (U0, X0, `

min
_ , `

min
q⇤ ). We

exclude any ROI that has fewer than 200 stars. We are left with a
total number of 16,898 ROIs. [LN: @Matt: Are these the ones that
include GD-1 or in total?]

3.4 Line-finding and stream detection

Over large angles on the sky, most streams form arcs in (U, X) rather
than lines (and streams with large line-of-sight velocities may not
appear to form lines at all). However, the deviation from a line for
the stars in the stream is small across a 10� radius circle on the sky.

Since there is a large number of ROIs, we need an automated
procedure for line finding. To do so, we use a machine learning
algorithm called the Hough transform (Duda & Hart 1972). A line
passing through a point on the plane (G, H) can be expressed in terms
of the distance d of closest approach to the origin, and the angle \

between the G axis and the perpendicular from the line to the origin.
For this single point, every line that passes through it will form a
curve in the (d, \) Hough space, given by

d = G sin \ � H cos \. (6)

Note d can take negative values – there is a periodicity in Hough
space of the form

(d, \) ⇠ (�d, \ ± c) (7)

If we consider two points in the plane, then their curves in Hough
space will intersect for the values of d and \ that define a line passing
through both points. For a set of points in the plane, a subset of
points on a line will manifest itself as overdensity in the (d, \) space
as many such curves intersect.

In Figure 1, we show an example of the Hough transform on
position data for a mock stream over a simulated uniform background.
As can be see in the right-most panel, the Hough curves for the stars
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Figure 1. Left: Angular position (q, _) of 20 stars drawn from a mock stream over a background of 80 mock stars drawn from a uniform background. Center:
As left, but with the 20 stream stars shown in red. Right: The positions of those mock stars transformed to Hough space (d, \) . [LN: @Matt: Make the size of
the points in the left 2 panels larger so they are easier to see.]

on the line all cross at the same point, corresponding to the d and
\ values of the line on which the mock stream falls. The Hough
transform therefore converts the problem of finding a line among
a set of 2-dimensional points to the problem of finding the point
with the highest density of curves in a 2-dimensional plane. We
accomplish this by identifying the region in Hough space with the
highest contrast in density compared to the region surrounding it.

To find the location of the highest contrast in the Hough space, we
define a filter function which is applied to a box centered on a location
(d, \) of width Fd and height F \ . The filter counts the number of
stars whose Hough curves pass through the box, allowing us to define
a number of curves at each point # (d, \). We then redo the filtering
with a larger box to estimate the “background” curve count, #̄ (d, \).
The large and small box dimensions are “hyperparameters" of the
Hough transform line detection method and must be tuned based
on known stellar streams to maximize detection e�ciency. The full
details of this filter function are described in Appendix F.

From the filter function count of Hough curves and background
estimate at each point (d, \), we define the line detection significance
to be

f! (d, \) =
# (d, \) � #̄ (d, \)p

#̄ (d, \)

(8)

We search in Hough space for the parameters that maximize this
significance.

When a stream is present in the SR and within the proper motion
range of a subregion, the resulting f! value is much larger than
those of subregions without linear structures. As a result, by cutting
on the maximum f! for a SR, we can distinguish search regions that
contain an actual stream in the high-' stars from those without. [LN:
@Matt: Do we really need the next 2 sentences?] Though constructed
as a standard deviation, we note that we have not validated that f!
has the correct distribution in background-only data. For an alternate
approach to using the Hough transform to identify stellar streams in
data (though for streams in M31 rather than in the Milky Way), see
(Pearson et al. 2019; Pearson 2021).

3.5 Final Merging and Clustering

Now we are finally ready to combine our Hough line finding algo-
rithm with ANODE and the ROIs to perform the stream detection.
We start by taking the 100 highest ' stars in each ROI. For each of
these samples, we transform to the star’s positions to Hough space

and apply the line-finding algorithm, returning a set of line param-
eters (d, \) and significance f! . We need to define a cut on the
significance of these lines to select only the most promising stream
candidates.

Cutting on the raw significance f! on an individual ROI is not
e�ective in identifying a tractable number of likely stream candidates,
because of the large trials factor —there areO(104

) ROIs in our study
of GD-1 alone. Random fluctuations of background would result in
line-like features in the background stars with large f! . Instead, we
use the fact that a stream is likely to be found in multiple ROIs
to design our cuts. Specifically, we require that the highest contrast
line parameters (d, \) are the same4 between three neighboring `_
windows within our ROI sample. The f! values of identical lines
in multiple overlapping ROI can then be added in quadrature to give
a f

combined
! value for the line candidate. By placing a threshold on

f
combined
! , we can reject spurious background while keeping likely

candidates for real streams. In Sec. 4, we discuss the significance of
the GD-1 stream, leaving the more general significance cut for Paper
II.

4 DEMONSTRATING THE FULL VIA MACHINAE
ALGORITHM WITH GD-1

We thus far have introduced the components of the Via Machinae al-
gorithm and provided examples of key pieces (the ANODE anomaly
detection and the Hough transform) on toy data [LN: @David: But
we did not have toy data though. Reading this a second time, I feel
even more strongly that we need to add those plots on mocks to make
the point]. We now apply the full algorithm on real Gaia data, using
the well-known stellar stream GD-1 as our demonstration.

GD-1 (Grillmair & Dionatos 2006) is a particularly bright and
well-defined stream, covering⇠ 120� on the sky. Though most stellar
streams are not nearly as long, bright, narrow, or well-defined as
GD-1, it provides an excellent testbed for V�� M������� as stellar
membership of the stream has been extensively studied (see e.g.
Price-Whelan & Bonaca (2018b); Bonaca et al. (2019, 2020)), and
its distinctiveness allows for clear demonstrations of the utility of the

4 To be precise, we require the line parameters to be within �\ = c/10 and
�d = 2� of each other.
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Clustering ROIs 
• To reduce trials factor and cut down on false positives / strengthen case for stream detection, we require “same” 

line to be detected by 3 neighboring ROIs (mu_lat=x,x+1,x+2 and same mu_lon).  
• Add individual line significances in quadrature to get combined line significance.

Stream name Significance ra, dec pmlat pmlon

Gaia1 15.52 193.3, -4.5 [-25,-24,-23] -18

Jhelum 16.83 351.4, -43.0 [-9,-8,-7] 4

Fjorm 10.38 216.0, 41.0 [3,4,5] -1

Leiptr 11.75 71.1, -12.4 [-16,-15,-14] 8

Svol 6.87 227.6, 23.3 [-9,-8,-7] 1

Fimbulthul 7.20 196.5, -20.9 [-14,-13,-12] -20

Gaia3/Ylgr 14.61 173.3, -17.2 [-12,-11,-10] -5

Sylgr 6.73 167.5, -4.2 [-21,-20,-19] -22

Slidr 8.61 171.4, 3.1 [-10,-9,-8] -24

GD1 29.1 148.6, 24.2 [-18,-17,-16] -9

Sagittarius

Table 2: Streams found using ANODE. For Gaia3/Ylgr there is another detection with slightly higher

significance (14.95) that only involves two pmlat SRs.

Stream name Ref µ↵ µ� Status

Aliqa Uma [4] 0.25 -0.71 pm too small

ATLAS [4] 0.09 -0.88 pm too small

Chenab [4] 0.32 -2.47 pm too small

Elqui [4] 0.13 -0.33 pm too small

Phoenix [4] 2.76 -0.05 pm too small

Tucana III [4] -0.1 -1.64 pm too small

Turranburra [4] 0.43 -0.89 pm too small

Pal5 [7] [-4,-2] [-4,-1] SRs excluded (too many stars)

Ophiuchus [8] [-7,-2] [-12,0] SRs excluded (too many stars)

Table 3: Other streams found in Gaia DR2.

5

(High success rate — these are nearly all the previously 
found streams contained in our fiducial dataset!)


“proto-cluster”

This cut on combined line significance would 
capture all the previously-found streams on this list

�combined
L > 6.7
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Merging protoclusters

• 1755 protoclusters (out of 140,000) after the 6.7sigma cut on combined line significance. 
• Merge the protoclusters that “agree” in position and velocity space (neighboring patches of 

the sky; concordant line parameters and proper motions) 
• Final result: 590 clustered stream candidates

�combined
L
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Protocluster combined line significances

6.7

Overflow: 

GD-1 (N=267)


Gaia-1 (N=203)


